Pythagoras' result

Sides in a right angled triangle

The result: long side

The result: long side

$$
\mathrm{H}^{2}=\mathrm{A}^{2}+\mathrm{B}^{2}
$$

To find the length of the long side:

The result: long side

$$
\mathrm{H}^{2}=\mathrm{A}^{2}+\mathrm{B}^{2}
$$

To find the length of the long side:

Find the squares of the two shortest sides, add the result, take the square root of the total...

Example: long side

$$
\mathrm{H}^{2}=\mathrm{A}^{2}+\mathrm{B}^{2}
$$

To find the length of the long side:

Example: long side

$$
\mathrm{H}^{2}=\mathrm{A}^{2}+\mathrm{B}^{2}
$$

To find the length of the long side:

$$
\begin{aligned}
& 12^{2}=144 \\
& \text { Square short } \\
& \text { sides }
\end{aligned}
$$

Example: long side

$$
\mathrm{H}^{2}=\mathrm{A}^{2}+\mathrm{B}^{2}
$$

To find the length of the long side:

$$
\begin{aligned}
12^{2} & =144 \quad \begin{array}{l}
\text { Square short } \\
\text { sides }
\end{array} \\
8^{2} & =64 \quad \text { Add } \\
144 & +64=208 \quad
\end{aligned}
$$

Example: long side

$$
\mathrm{H}^{2}=\mathrm{A}^{2}+\mathrm{B}^{2}
$$

To find the length of the long side:

$$
\begin{array}{ll}
12^{2}=144 & \text { Square short } \\
& \text { sides }
\end{array}
$$

$144+64=208 \quad$ Add
$\sqrt{ } 208=14.4$
Square root

Your turn

B.

Is this triangle right angled?

Your turn: Answers

B.

Is this triangle right angled?

The result: short side

$$
\mathrm{A}^{2}=\mathrm{H}^{2}-\mathrm{B}^{2}
$$

To find the length of the short side:

The result: short side

$\mathrm{A}^{2}=\mathrm{H}^{2}-\mathrm{B}^{2}$

To find the length of the short side:

Find the squares of the long side and the other short side, find the difference, take the square root of the total...

Example: short side

$$
\mathrm{A}^{2}=\mathrm{H}^{2}-\mathrm{B}^{2}
$$

Example: short side

$\mathrm{A}^{2}=\mathrm{H}^{2}-\mathrm{B}^{2}$
To find the length of the short side:

Example: short side

$\mathrm{A}^{2}=\mathrm{H}^{2}-\mathrm{B}^{2}$
To find the length of the short side:

$$
\begin{aligned}
10^{2} & =100 & & \begin{array}{l}
\text { Square known } \\
7^{2}
\end{array}=49
\end{aligned} \begin{aligned}
& \text { sides }
\end{aligned}
$$

Example: short side

$$
7 \mathrm{~cm}
$$

$\mathrm{A}^{2}=\mathrm{H}^{2}-\mathrm{B}^{2}$
To find the length of the short side:

$$
\begin{array}{cc}
10^{2}=100 & \begin{array}{l}
\text { Square known } \\
\text { sides }
\end{array} \\
7^{2}=49 & \\
100-49=51 & \text { Subtract }
\end{array}
$$

Example: short side

$$
\mathrm{A}^{2}=\mathrm{H}^{2}-\mathrm{B}^{2}
$$

To find the length of the short side:

$$
\begin{array}{cl}
10^{2}=100 & \begin{array}{l}
\text { Square known } \\
7^{2}=49
\end{array} \\
\text { sides } \\
100-49=51 & \text { Subtract } \\
\sqrt{51}=7.14 \mathrm{~cm} & \text { Square root }
\end{array}
$$

Your turn

Your turn: answers

D.

Diagonal is 14.1 cm long How long is side?

Mixed problems

Mixed problems

Find the right angle

Mixed problems

Find the right angle
Opposite side is always longest

Mixed problems

Find the right angle
Opposite side is always longest

If you know both short sides: square and add

Mixed problems

Find the right angle
Opposite side is always longest

If you know both short sides: square and add

If you know a long and a short side: square and subtract

Mixed problems

Find the right angle
Opposite side is always longest

If you know both short sides: square and add

If you know a long and a short side: square and subtract

Take square root at the end...

Example

A ladder leans against a wall.

The ladder is 15 ft long, and the foot of the ladder is placed 3 ft away from the wall.

How high up the wall does the ladder reach?

Example

Right angle is assumed to be between wall and ground!

Example

Right angle is assumed to be between wall and ground!

The 15 ft ladder is the longest side

Example

Right angle is assumed to be between wall and ground!

The 15 ft ladder is the longest side

The height up the wall is the missing short side

Example

Right angle is assumed to be between wall and ground!

The 15 ft ladder is the longest side

The height up the wall is the missing short side
$15^{2}-3^{2}=225-9=216$

Example

Right angle is assumed to be between wall and ground!

The 15 ft ladder is the longest side

The height up the wall is the missing short side
$15^{2}-3^{2}=225-9=216$
$\sqrt{ } 216=14.7 \mathrm{ft}$

Your turn

- Find the mixed exercises in your textbook
- Make sure you know where the right angle is
- Check that your answers make sense (the longest side must always be less than the sum of the two short sides!)

